N-1324-HEW

October 1979

A LOOK AT VARIOUS ESTIMATORS IN LOGISTIC MODELS IN THE PRESENCE
OF MISSING VALUES

Winston K. Chow

A Rand Note

prepared for the
U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

SANTA MONICA, CA. 90406




Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
OCT 1979 2. REPORT TYPE 00-00-1979 to 00-00-1979
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Look at Various Estimatorsin Logistic Modelsin the Presence of
Missing Values

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Rand Cor poration,1776 Main Street,PO Box 2138,Santa REPORT NUMBER

Monica,CA,90407-2138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 32
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



The research reported herein was performed pursuant

to Grant No. 016B-7901-P2021 from the U.S. Department

of Health, Education, and Welfare, Washington, D. C.
The opinions and conelusions expressed herein are solely
those of the author, and should not be construed as
representing the opinions or policy of any agency of the
Unites States Government.

The Rand Publications Series: The Report is the principal publication doc-
umenting and transmitting Rand’s major research findings and final research
results. The Rand Note reports other outputs of sponsored research for
general distribution. Publications of The Rand Corporation do not neces-
sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation



N-1324-HEW

October 1979

A LOOK AT VARIOUS ESTIMATORS IN LOGISTIC MODELS IN THE PRESENCE

OF MISSING VALUES

Winston K. Chow

A Rand Note

prepared for the
U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

SANTA MONICA, CA. 90406







iii

PREFACE

This Note was prepared for presentation at the annual meeting
of the American Statistical Association, Washington, D.C., August 13-
16, 1979. It reports on Rand research supported by a grant from the
U.S. Department of Health, Education, and Welfare.

The objective of this research is to present various methods for
estimating parameters of logistic regression models in the presence
of missing values. Many of the commonly used techniques for treating
missing values in multiple regression are incorporated into the

logistic regression framework.






SUMMARY

Two commonly used procedures for estimating the parameters of a
logistic regression function are the maximum likelihood estimators
and the discriminant function estimators. Comparisons of these pro-
cedures for fitting logistic regression models based on the experience
of many researchers can be found in the literature. The comparisons
become more complicated when one or more values of the independent
variables of certain observations are missing at random. When data
are missing, researchers may not be willing to base their estimates
only on the subset of complete cases, particularly if the size of
this subset is relatively small.

In this paper, six missing-values techniques are studied:

DFl: Discriminant Function Estimation Using Complete Obser-

vations

DF2: Discriminant Function Estimation Using Existing Pairs
of Values for Correlations

DF3: Discriminant Function Estimation Adjusting for Resi-
dual Covariances

ML1: Maximum Likelihood Estimation Using Complete Observa-
tions

ML2: Maximum Likelihood Estimation with Indicator Variables
for Missing Data

WLS: Weighted Least Squares Estimation after Linearizing
the Conditional Probability
The estimators generated by the methods DFl and MLl simply ignore
the observations having missing components. Method DF2 incorporates
estimated mean vectors and covariance matrices in the linear discri-

minant function; the means are calculated using all available data,
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but correlations are computed using only the complete pairs. Method
ML2 first replaces missing values by zeros and incorporates additional
independent variables indicating the positions of the missing values.
Then the augmented logistic regression model is fitted by maximum
likelihood. Methods DF3 and WLS are candidates when estimates of
missing values are required bésed on all other available information.
The main feature of these two methods is that they allow for wvariances
resulting from errors due to using approximations instead of the
actual values of the independent variables.

In practice, the choice of procedure depends heavily on three
factors: (1) the need to estimate the missing values; (2) availa-
bility of computer programs; (3) execution time. Based on his
accumulated empirical experience, the author would like to recommend
using methods DF2 or ML2 in conjunction with either DFl or MLl for
estimating the logistic regression parameters from incomplete data.
Comparing the results based on the complete observations with those
derived by either method DF2 or ML2 allows one to test for possible
selectivity bias that may exist, It also provides a good sensitivity

check on the estimates of the coefficients.
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1. INTROBUCTION

Let (Xl,Yl), (XZ,YZ),..., (Xn,Yn) be a random sample from a
population I such that Yi is 1 or 0 according as the ith indivi-
dual in the sample belongs to some population Hl or its comple-
ment HO' The model of interest is one that relates this dichoto-

mous (quantal)} dependent variable, Y, to one or more independent

variables, Xl,Xz,...,X , by a logistic regression function,
p
E(Y|X) = P[Y=1]X] = *_(olﬁm (1)
1+e

where X' = (X1 X2 . Xp) and R' = (Bl 82 v Bp).

The estimators of the coefficients for this model have been
studied by several authors. A solution of a "classification" or
"discrimination" problem in which an object with given charac-
teristics is to be classified into one of two alternative popula-
tions provides one set of estimators for the "logistic regres-
sion" problem. The discriminant function solution turns out to
be equivalent to the maximum likelihood estimators derived for
the logistic regression under the assumptions of normality for
the X's and equal covariance matrices for the two distributions.
If we let Pj’ j = 0,1, denote the proportion of the population in
Hj; uj denote the mean vector of X in Hj; z denote the common
covariance matrix of X; nj denote the number of observations from
I.; x. denote the sample mean vector of the nj individuals from

3
Hj; and S denote the pooled sample covariance matrix of the X's



across the two subpopulations, the maximum likelihood:.estimates

of the parameters are

=3}

= log(Fy /By - B (x;+x)/2 (2)

®)
I

_l_ —_
S (xl—xo .

Here, ﬁj = nj/n, §5 and S are the maximum likelihood estimates of

P Hj, and Z respectively. These estimates are usually

3’
referred to as the linear discriminant function estimates (LDFE).
Even when the normality assumptions fail to hold, many previous

studies have still considered logistic regression an appropriate

model, except that in these cases they merely assume that the

conditional distribution of Y given X = x has the logistic form

1 3

p(x) = P[Y=1|X=x] = ——F——
l+e_-(oc+X 8)

In this case, many statisticians prefer to use the conditional
maximum likelihood estimators (CMLE) of o and B which maximize
n

L(a,B) = I
i=1

v, 1-y,
1 1
[p(xi)] [l—p(xi)] . (4

Arguments for choosing either one of these two estimators
for a logistic regression model based on empirical evidence.
have been given by several authors [8,10,11,16]. From the
economical point of view, LDFE's are cheaper to obtain. In their
comparison, Halperin, Blackwelder and Verter [11]} reported that

"the times required for compilation and execution of the program



were higher for the MLE method than for the discriminant function
method by factors ranging approximately from 1.3 to 2.0."
Haggstrom [10] also points out that analysts of logistic models
should be aware of the relationships between the "discrimination"
and "logistic regression' problems, if for no other reason than
to take advantage of the computational simplicity of the discrim-
inant function estimates when doing exploratory work in fitting
the logistic model.

In terms of asymptotic efficiency, Efron [8] shows that typ-
ically the CMLE are between one-half and two-thirds as efficient
as LDFE when X follows a multivariate normal distribution with
equal covariance matrices. On the other hand, Press and Wilson
[16] propose that "Simulation might be used to determine the
relative efficiency of the two estimators under non-normality,
but it would not be surprising to find the sufficient estimator
(MLE) dominant.” Other arguments given in favor of CMLE over LDFE
are that (1) LDFE may not be consistent, (2) the significance
associated with LDFE may be misleading when the normality assump-
tions are violated, and (3) CMLE forces the expected number of
cases to be equal to the observed number of cases, which is
desirable.

The comparison becomes more complicated when one or more
values of the independent variables of certain observations are
missing, a problem that occurs quite often--especially in sample
surveys. In this paper, we consider treatment of the missing
values that occur "at random” in the logistic regression model.

A great deal of literature has been produced on handling missing



data in multiple regression and discriminant analysis [1-5,
7,9,12,13,15,19]. In practice, there are four commonly used

approaches:

1. Estimate coefficients using only the subset of com-
plete cases.

2. Estimate coefficients using sample moments and
correlations estimated using all available data.

3. Replace each missing value by zero (or any constant)
and create an indicator variable for each variable
denoting whether the corresponding variable is miss-
ing or not. The coefficients are then estimated by
regressing the dependent variable simultaneously on
all the independent variables and their correspond-
ing indicator variables provided that there is at
least one missing entry for that wvariable.

4. Substitute missing values for each observation using
estimates based on all the other available informa-
tion. The coefficients are then estimated using all
the complete and completed observations. The sub-
stitutions are frequently obtained either by the
zero order regression method [1] or the first order
regression method [1,2,9,13,15,19].

It should be noted that many other methods have been
proposed in dealing with specific situations. Even among
the four general approaches mentioned above, many variations
of the methods have been suggested. Some of them are "quick

1

and dirty," some "simple but inconsistent," and some 'com-
plicated and costly even though theoretically more prefer-
able." Depending on the pattern of missing values and the
nature of the independent variables, no method seems to suit
all cases. Six methods for generating estimators of the
coefficients for a logistic regression model are considered

in Section 2. Three of them are related to linear discrim-

inant function estimates, two of them carry the idea of con-



ditional maximum likelihood estimates, and the last one is a
proposed weighted least squares (WLS) method resulting from
linearization of the conditional probability of Y given
X = x. General discussions on the choice of using these

methods are given in Section 3.



2. DESCRIPTION OF THE METHODS

The six methods considered in this paper can be
described as follows:

Method DF1: Discriminant Function Estimation Using

Complete Observations. All observations with one or more

missing values are omitted from analysis. The linear
discriminant function estimate is calculated as usual
according to Eq. (2) with sample sizes reduced.

Method DF2: Discriminant Function Estimation Using

Existing Pairs of Values for Correlations. [a] The attempt

here is to utilize all available information to improve the
estimation. In calculating the sample mean and sample vari-
ance for each variable, all observed values for that vari-
able are used. In estimating covariances, one first esti-
mates correlations using all complete pairs of observations
and then estimates covariances by multiplying the sample
correlations by the corresponding sample standard devia-
tions. The estimated covariance matrix formed in this way
can then be used to calculate the linear discriminant func-
tion estimate. Since this procedure produces consistent

estimates of means and covariances, it follows that discrim-

[a]l] A more commonly used approach called "pairwise deletion"
attempts to estimate the covariances from all complete pairs of
observations.



inant function estimates are also consistent. This method
is preferable to method DF1 when a large proportion of
observations have a small number of missing entries.

Method DF3: Discriminant Function Estimation Adjusting

for Residual Covariances. Buck [2] suggested a method of

estimating missing values in the sample by regression tech-
niques using only the complete observations. For observa-
tions with v, 1 < v < p-1, variables missing, one calculates .
the multiple regression for each missing variate on the
remaining p-v variates and then estimates the missing value
by the fitted value obtained from the appropriate regression
function. vThe auxiliary regressions are computed separately
for each value (zero or one) of the dependent variable.
However, when the sample was completed by filling in missing
values, the pooled sample covariance matrix becomes an
inconsistent estimate of the population covariance matrix.
Hence, in order to get consistent estimates of the logistic
regression coefficients, one needs to adjust for '"residual
covariances.'" Little [12] suggests that one first form

A= {ajk}’ the pooled sum of squares and cross products
matrix of the combined complete and completed observations,
and then adjust it as follows. For each observation where
x, and Xk are both missing, add to ajk an estimate of the
residual covariance (variance if j = k) of Xj and X, given
the variables present in that observation. This estimate is
derived by pooling the estimated covariance matrices over

two sets of complete observations, one for each value of the
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dependent variable. If A is the adjusted matrix, substitut-
ing S = A/(n-p-1) for § in (2) yields a consistent set of
estimators.

Method ML1: Maximum Likelihood Estimation Using Com-

plete Observations. Maximum likelihood estimates which max-

imize Eq. (4) are calculated using only the subset of com-
plete observations.

Method ML2: Maximum Likelihood Estimation with Indica-

tor Variables for Missing Data. When data are missing on
some variables, instead of omitting the observations with at
least one missing entry from the analysis, each missing
value can be replaced by zero. To account for this replace-
ment on each incomplete variable, create an indicator vari-
able to designate the missing pattern of that variable [17].
The indicator variable takes on a value of 1 if the associ-
ated independent variable has a missing entry and 0 other-
wise. The CMLE will then be obtained from the logistic
regression model with all the independent variables and the
formed indicator variables included simultaneously on the
right-side expression given in Eq. (3). As an extension of
this methodology, more than one indicator variable can be
created for each incomplete variate by interacting the miss-
ing designator with other characteristics that are judged
important. This procedure has the advantage of computa-
tional simplicity, it uses all available information, and it

provides estimates of the missing values which can be used

to examine the hypothesis that data are missing at random.



Method WLS: Weighted Least Squares Estimation after

Linearizing the Conditional Probability. When data are

missing at random, one possible approach is to estimate the
missing values. As described in DF3, Buck [2] suggested a
method of estimating missing values for each observation
using the appropriate regression functions of the missing
variables on all the available variables for that observa-
tion, where the auxiliary regression coefficients are
estimated from the subset of all complete observations.
This substitution introduces an additional approximation
error into the equation which should be taken into account
in the analysis. Walker and Duncan [18] propose a weighted
least squares solution to the estimation of Eq. (3) which,
as they say, is equivalent to estimation of the parameters
in (3) by maximum likelihood when the data are complete.
Following their approach with linearization of the condi-
tional probability in obtaining a linear formulation, we
shall now treat the model, when data are missing, as if it
were conditional only on the observed values with the miss-
ing data replaced by some linear function of the observed
values. The errors induced by such approximations will then
be incorporated with the error of the model. Under the
assumption of no pairwise correlation between the completed
independent variables, the approximation errors and the
error of the model, one can then derive a weighted least

squares solution to the problem.
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For the purposes of this discussion, the success proba-
bility Pi for the ith individual will be represented in the

form

P, = PIYS1]X =%, ] = £0x,,6) = {Ttexp(x, 'B)}

where B and Xi are now {(p+l)-dimensional columm vectors:

B8 = (a0 B Bp)' and Xy = (1 x ... X _,)'. Following the

1 1i pi

development of Walker and Duncan in [18], we consider the

model in the form

Y. = f(x.,B) + ¢,
i i i

where

E(ei) =0, Var(ei) = Pi(l—Pi) = PiQi’ 1 <1i<nm.

Expanding f in a Taylor series around some initial guessed
value of B, say B, we obtain an approximation to (5) which

can be written in matrix form as
* %
Y EXB +¢

%
where € and Y are nx 1 vectors with elements Ei and

% - —_
— - 1
Y, =¥ - By ot PQ;x 8.

% %
Here, X is the nx (ptl) matrix having xi' = PiQixi' as its
th

i row, E& = f(xi;g), and‘ai =1 - Pi'

(5)

(6)
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If the approximation (6) were an equality, the best
linear unbiased estimator of B would be the weighted least

squares estimator

ER

~ E *
B=((X WX) X Wy

where W is the diagonal matrix of weights Wi T 1/(Pi6i)'
Walker and Duncan considered using (7) as a means for pro-
viding an iterative solution of the normal equations,
thereby identifying the solution as the value of the (condi-
tional) maximum likelihood estimator é.

When data are incomplete, one approach to estimate the
missing values X is to replace them by some estimated
values ;ik' These ;ik are computed from the appropriate
regression function depending on the available information
on X, . The parameters of these auxiliary regressions can be
estimated from the subset of complete observations. With
the missing values of each incomplete variable replaced, one
can then apply the Duncan-Walker procedure to the completed
data matrix to derive estimates that are analogous to the
conditional maximum likelihood estimates for complete data.

The proposed WLS approach in the presence of missing

data begins by rewriting (6) in the form

Tgnoring all terms of order greater than one in the approxi-

. .th . .
mation, the i coordinate of w is

1"

Wy S ey (Xi—xi) (28-8)

e, +P.Q, ) (28 -8 )u,
i i 1k€Mi k "k’ ik

(7

(8)
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where uj, = i = Xik- Assuming the covariance between the

last two terms above is negligible, we have that

_— 2 — —
Var(w,) = Var(e,) + (P,Q.)" )} ) (28,-8.)(28, -B,)o.,. (9)
i i iti jEMi keMi i3 k "k7 ik

0,, = ce gUsr ) i o,
where ik Cov(ulj,ulk) Since the terms ik can be
estimated using the residuals i T Xk from the regressions

on the complete cases, the covariance matrix of w can be

estimated using the diagonal matrix

~

ZW = B + L(B)

where B is a diagonal matrix with diagonal elements being
- = th
estimates of P,Q;, and the i~ diagonal element of L(B) is

an estimate of the second term on the right in (9) that

A

incorporates estimates of o, and-E.Q.. Hence, z is itself
jk i*i 34
a function of B.
The proposed weighted least squares estimate for incom-

plete data is given by the equation

~ ART A

By

_ * —1A% _1A%s —]0%
—(XZWX)XWY. (10)

This equation represents a system of (p+1) simultaneous
non-linear equations in the (p+1) unknown elements of B

which can be used to determine an iterative solution analo-



gous to the Duncan-Walker solution for determining the max-
imum likelihood estimator.

It can be shown that if the approximation (8) were an
equality, the solution to (10) is a consistent estimator of
B as long as B is consistent. The proof is similar to the
idea outlined in the Appendix of [7]. Nonetheless, one can-
not assure that this solution éM is also a consistent esti-
mator of B in (5) without further investigation. However,
if the proportion of missing data is small, we believe that
even if it is not consistent, the asymptotic bias should be
small. At least in the case when no data are missing, the
consistency of é is well established. Hence, any efficient

optimization procedure applied to (10) should converge after

several iterations if some good initial estimate R is used.



3. DISCUSSION

When parameters of logistic regression are estimated
from data which contain incomplete information, several
methods can be used. Some of the procedures may be simple
but inconsistent, such as the linear discriminant function
estimators in the non-normal case; some may be complicated
to compute, such as the DF3 and WLS estimators. However,
when the data are not missing in any systematic fashion, it
appears from empirical evidence that the differences in the
estimates are usually not large. One such application of
all these methods to a numerical example can be found in
[6].

Budget constraints and availability of computer pro-
grams normally constrain the number of alternative
approaches. The decision as to which method to use depends
also on the missing pattern of the variables and the need
for estimating missing values.

In practice, the choice of estimation depends heavily
on three dominant factors. First, it depends on whether the
researcher wants to estimate missing values. In some situa-
tions, derived scores are required for each subject. In
such cases, it is more appropriate to use either method DF3
or WLS for estimating the parameters. Second, execution
time plays an important role in selecting which estimation

method to use. DF1 is most efficient in this sense; the
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others can take as much as four times as long to compute.
Third, availability of computer programs that handle miss-
ing values also confines the type(s) of estimation methods
one can apply. Obviously, method DFl can be performed
easily using any multiple regression package. If a condi-
tional maximum likelihood program is also readily available
[14,18] methods ML1 and ML2 can also be used. By specifying
the CORPAIR option in program BMDP8D, one can obtain the
correlation matrix needed for computing estimator DF2.
Currently, computexr programs exist at The Rand Corporation
for performing methods DF3 and WLS, but these are not easily
adapted to other computer facilities.[a]

Based on his accumulated empirical experience, the
author would like to strongly recommend using either method
DF2 or ML2 for estimating the parameters in logistic regres-
sion with incomplete data. Even if the assumption that data
are missing at random is not found to be violated, it is
still desirable to compare the results based on the complete
observations with those derived by either method DF2 or ML2
utilizing all the available information. It is not surpris-
ing to find different effects being shown for few variables
in many data sets containing missing entries. If this hap-
pens, further investigations for any possible selectivity
~ [a] The programs rely heavily on STATLIB, a statistical com-
puting library developed at Bell Laboratories and at Rand. Since

this library is not yet ready for wide distribution, the programs
are also not vet available for general use.
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bias that may exist are needed. Even if similar results are obtained
using the two methods, the runs provide a sensitivity check on the

estimates of the coefficients in the logistic regression model.
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